Ce3+ Doped Al2O3-YAG Eutectic as an Efficient Light Converter for White LEDs

Materials (Basel). 2023 Mar 28;16(7):2701. doi: 10.3390/ma16072701.

Abstract

Ce3+ doped Al2O3-YAG eutectics were successfully grown by the horizontal directional crystallization method. The crystallization rate of eutectic growth was changed in the 1-7.5 mm/h range at a growth temperature of 1835 ℃. The microstructure of eutectic samples was investigated using scanning electron microscopy and X-ray microtomography. The intrinsic morphology of eutectic represents the stripe-like channel structure with a random distribution of the garnet Y3Al5O12 (YAG) and Al2O3 (sapphire) phases. The content of these phases in the stripes changes in the 52.9-55.3% and 46.1-47.1% ratios, respectively, depending on the growth rate of the crystallization of the eutectic samples. The luminescent properties of the eutectic demonstrated the dominant Ce3+ luminescence in the garnet phase. The luminescence of the Ce3+ ions in Al2O3 has also been observed and the effective energy transfer processes between Ce3+ ions in the Al2O3 and YAG garnet phases were revealed under high-energy excitation and excitation in the UV Ce3+ absorption bands of sapphire. The phosphor conversion properties and the color characteristics (Al2O3-YAG):Ce eutectic with different thicknesses were investigated under excitation by a blue LED. We have also tested the prototypes of white LEDs, prepared using a blue 450 nm LED chip and (Al2O3-YAG):Ce eutectic photoconverters with 0.15 to 1 mm thicknesses. The results of the tests are promising and can be used for the creation of photoconverters for high-power white LEDs.

Keywords: Al2O3-Y3Al5O12 eutectic; Ce3+ dopant; luminescence; phosphor converters; white LEDs.