Biochemical characterization of solid-state fermented cassava roots (Manihot esculenta Crantz) and its application in broiler feed formulation

World J Microbiol Biotechnol. 2022 Dec 29;39(2):62. doi: 10.1007/s11274-022-03496-x.

Abstract

The biochemical parameters of solid-state fermented peeled and unpeeled cassava roots (Manihot esculenta Crantz) and their application in broiler feed formulations were investigated. Fermentation occurred at room temperature for 72 h (pH 3-9). The samples utilized for five (5) broiler starter feeds were labeled: control, unfermented unpeeled cassava (UUC), unfermented peeled cassava (UPC), fermented unpeeled cassava (FUC), and fermented peeled cassava (FPC). Formulations were made by substituting fermented/non-fermented cassava roots at pH 7 for maize (w/w%). Fermentation-induced changes included increased soluble and total protein concentrations (69.3 and 334.5 mg/g) and (9.6 and 10.8%), respectively, in cultures prepared with peeled and unpeeled cassava at pH 7 compared to the control (p < 0.05), and a reduction (p < 0.01) in cyanide concentration from 44.4 to 78.7 mg/kg in the control to 8.5 and 13.7 mg/kg in fermented cassava at pH 7. Birds fed FUC and FPC meal (0.6 and 0.5 kg) gained significantly more weight (p < 0.05) than those fed the control (0.3 kg). The biochemical parameters aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and urea levels in broiler serum did not differ significantly (p > 0.05) for birds fed with fermented peeled and unpeeled cassava. Conversely, serum albumin and calcium levels were significantly lower (p < 0.05) for birds fed with the control feed compared to birds fed with fermented feeds. The results imply that fermented peeled and unpeeled cassava roots could be a safe and nutritionally beneficial replacement for maize in broiler diet.

Keywords: Cassava; Glucose; Rhizopus oligosporus; Solid-state fermentation; Soluble proteins.

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Chickens
  • Cyanides / metabolism
  • Diet / veterinary
  • Fermentation
  • Manihot* / chemistry
  • Manihot* / metabolism
  • Vegetables
  • Zea mays

Substances

  • Cyanides