Sweet Potato as a Key Crop for Food Security under the Conditions of Global Climate Change: A Review

Plants (Basel). 2023 Jun 30;12(13):2516. doi: 10.3390/plants12132516.

Abstract

Sweet potato is one of the most economically important crops for addressing global food security and climate change issues, especially under conditions of extensive agriculture, such as those found in developing countries. However, osmotic stress negatively impacts the agronomic and economic productivity of sweet potato cultivation by inducing several morphological, physiological, and biochemical changes. Plants employ many signaling pathways to respond to water stress by modifying their growth patterns, activating antioxidants, accumulating suitable solutes and chaperones, and making stress proteins. These physiological, metabolic, and genetic modifications can be employed as the best indicators for choosing drought-tolerant genotypes. The main objective of sweet potato breeding in many regions of the world, especially those affected by drought, is to obtain varieties that combine drought tolerance with high yields. In this regard, the study of the physiological and biochemical features of certain varieties is important for the implementation of drought resistance measures. Adapted genotypes can be selected and improved for particular growing conditions by using suitable tools and drought tolerance-related selection criteria. By regulating genetics in this way, the creation of drought-resistant varieties may become cost-effective for smallholder farmers. This review focuses on the drought tolerance mechanisms of sweet potato, the effects of drought stress on its productivity, its crop management strategies for drought mitigation, traditional and molecular sweet potato breeding methods for drought tolerance, and the use of biotechnological methods to increase the tolerance of sweet potato to drought.

Keywords: abiotic stress; drought; drought tolerance; gene expression; mitigation of stress; osmotic stress; sweet potato; transformation; water stress.

Publication types

  • Review