Bio-corrosion behavior and mechanical characteristics of magnesium-titania-hydroxyapatite nanocomposites coated by magnesium-oxide flakes and silicon for use as resorbable bone fixation material

J Mech Behav Biomed Mater. 2018 Jan:77:360-374. doi: 10.1016/j.jmbbm.2017.09.032. Epub 2017 Sep 27.

Abstract

This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36MPa for MgO and ~32MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating.

Keywords: Adhesion strength; Cell viability; Immersion; Mg/TiO(2)-based nanocomposite; Si/MgO coating; UCS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alloys / chemistry*
  • Bone Resorption
  • Cell Adhesion
  • Cell Survival
  • Coated Materials, Biocompatible / chemistry*
  • Compressive Strength
  • Corrosion
  • Durapatite / chemistry*
  • Electrochemistry
  • Humans
  • Magnesium Oxide / chemistry*
  • Materials Testing
  • Microscopy, Electron, Scanning
  • Microscopy, Electron, Transmission
  • Nanocomposites / chemistry*
  • Osteoblasts / drug effects*
  • Potentiometry
  • Pressure
  • Silicon
  • Solubility
  • Stress, Mechanical
  • Surface Properties
  • Temperature
  • Tensile Strength
  • Titanium
  • X-Ray Diffraction

Substances

  • Alloys
  • Coated Materials, Biocompatible
  • titanium dioxide
  • Magnesium Oxide
  • Durapatite
  • Titanium
  • Silicon