Influence of the Interlayer Temperature on Structure and Properties of Wire and Arc Additive Manufactured Duplex Stainless Steel Product

Materials (Basel). 2020 Dec 18;13(24):5795. doi: 10.3390/ma13245795.

Abstract

WAAM (wire and arc additive manufacturing) is becoming an increasingly popular method to produce components from metals, which are usually not so suitable for conventional production methods. One of the good examples is duplex stainless steels (DSSs), which are quite complex for welding and machining. Excessive ferrite amount is a common problem for them and controlling an interlayer temperature could offer a solution. However, using too low interlayer temperature will slow down the whole process and compromise one of the WAAM's main advantages-the high productivity. The aim of this study is to find the relationship between interlayer temperature and process duration and to determine the influence of the interlayer temperature on product structure and other properties. Three samples (walls) were made using different interlayer temperatures (50 °C, 100 °C and 150 °C) and they were tested to analyze their surface texture, chemical composition, ferrite amount, the appearance of porosity and the hardness. Ferrite amount was higher and there was more porosity on lower interlayer temperatures, while there is no significant difference between surface texture and chemical composition for the samples. Considering the fact that higher interlayer temperatures provide a faster process, they should be preferred to produce duplex stainless steel products.

Keywords: duplex stainless steel (DSS); ferrite amount; hardness; interlayer temperature; porosity; wire and arc additive manufacturing (WAAM).