Analysis, Design and Realization of a Furnace for In Situ Wettability Experiments at High Temperatures under X-ray Microtomography

J Imaging. 2021 Nov 15;7(11):240. doi: 10.3390/jimaging7110240.

Abstract

In this study, we analyzed the problem of a compact furnace, to be used for in situ experiments in a cone-beam X-ray microtomography commercial system. The design process was accomplished and outlined through its main steps, until the realization of a prototype. The furnace was conceived to carry out wettability experiments at temperatures up to 700 °C and under inert atmosphere on sessile droplets of a molten metal alloy, with a few millimeters diameter, posed on a thin ceramic substrate. X-ray imaging of the molten droplet is expected to permit an accurate three-dimensional reconstruction of the droplet profile and a robust estimation of the related quantities (such as the contact angle and the surface tension) utilized for the assessment of metal-ceramic joints by brazing. The challenges faced during this project, mostly related to the constraints of the setup, and the novel solutions implemented were discussed also with the support of analytical and numerical tools, in terms of interaction of X-rays with matter, geometry and working principle, heat transfer and insulation, material selection.

Keywords: X-ray microtomography; brazing joints; in situ experiments; materials science; wettability.