The Role of Pseudomonas in Heterotrophic Nitrification: A Case Study on Shrimp Ponds (Litopenaeus vannamei) in Soc Trang Province

Microorganisms. 2019 May 29;7(6):155. doi: 10.3390/microorganisms7060155.

Abstract

Based on a total of 6,295,650 sequences from the V3 and V4 regions (16S ribosomal RNA), the composition of the microorganism communities in the water of three Litopenaeus vannamei (Decapoda, Whiteleg shrimp; Soc Trang, Vietnam) ponds were identified. Pseudomonas (10-20.29%), Methylophilus (13.26-24.28%), and Flavobacterium (2.6-19.29%) were the most abundant genera. The total ammonia (TAN) concentration (p = 0.025) and temperature (p = 0.015) were significantly correlated with the relative abundance of Pseudomonas in two bacterial communities (ST1, ST4), whereas the predictive functions of microorganism communities based on 16S rRNA gene data was estimated using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUST), which showed that nitrogen metabolism was significantly negatively correlated (p = 0.049) with TAN concentration. The abundance of Pseudomonas and nitrogen metabolism increased with a decrease in TAN concentration. The correlation between TAN concentration and the abundance of Pseudomonas was followed by the isolation, and heterotrophic nitrifying performance analysis was used to confirm our findings. Six Pseudomonas strains capable of heterotrophic nitrification were isolated from the three water samples and showed a complete reduction of 100 mg/L NH4Cl during a 96-h cultivation. These results indicate the potential of applying Pseudomonas in shrimp ponds for water treatment.

Keywords: Litopenaeus vannamei; Pseudomonas; ammonia; heterotrophic nitrification.