Review of Additively Manufactured Polymeric Metamaterials: Design, Fabrication, Testing and Modeling

Polymers (Basel). 2023 Sep 22;15(19):3858. doi: 10.3390/polym15193858.

Abstract

Metamaterials are architected cellular materials, also known as lattice materials, that are inspired by nature or human engineering intuition, and provide multifunctional attributes that cannot be achieved by conventional polymeric materials and composites. There has been an increasing interest in the design, fabrication, and testing of polymeric metamaterials due to the recent advances in digital design methods, additive manufacturing techniques, and machine learning algorithms. To this end, the present review assembles a collection of recent research on the design, fabrication and testing of polymeric metamaterials, and it can act as a reference for future engineering applications as it categorizes the mechanical properties of existing polymeric metamaterials from literature. The research within this study reveals there is a need to develop more expedient and straightforward methods for designing metamaterials, similar to the implicitly created TPMS lattices. Additionally, more research on polymeric metamaterials under more complex loading scenarios is required to better understand their behavior. Using the right machine learning algorithms in the additive manufacturing process of metamaterials can alleviate many of the current difficulties, enabling more precise and effective production with product quality.

Keywords: additive manufacturing; architected materials; lattices; mechanical characterization; polymeric composites.

Publication types

  • Review

Grants and funding

This work is funded by the Advanced Digital and Additive Manufacturing Center of Khalifa University of Science and Technology.