Effect of Alpha-Glucosyl-Hesperidin Consumption on Lens Sclerosis and Presbyopia

Cells. 2021 Feb 12;10(2):382. doi: 10.3390/cells10020382.

Abstract

Presbyopia is characterized by a decline in the ability to accommodate the lens. The most commonly accepted theory for the onset of presbyopia is an age-related increase in the stiffness of the lens. However, the cause of lens sclerosis remains unclear. With age, water microcirculation in the lens could change because of an increase in intracellular pressure. In the lens, the intracellular pressure is controlled by the Transient Receptor Potential Vanilloid (TRPV) 1 and TRPV4 feedback pathways. In this study, we tried to elucidate that administration of α-glucosyl-hesperidin (G-Hsd), previously reported to prevent nuclear cataract formation, affects lens elasticity and the distribution of TRPV channels and Aquaporin (AQP) channels to meet the requirement of intracellular pressure. As a result, the mouse control lens was significantly toughened compared to both the 1% and 2% G-Hsd mouse lens treatments. The anti-oxidant levels in the lens and plasma decreased with age; however, this decrease could be nullified with either 1% or 2% G-Hsd treatment in a concentration- and exposure time-dependent manner. Moreover, G-Hsd treatment affected the TRPV4 distribution, but not TRPV1, AQP0, and AQP5, in the peripheral area and could maintain intracellular pressure. These findings suggest that G-Hsd has great potential as a compound to prevent presbyopia and/or cataract formation.

Keywords: TRPV channel; hesperetin; hydrostatic pressure; lens accommodation; lens stiffness; presbyopia; α-glucosyl hesperidin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aquaporins / metabolism
  • Cell Membrane / metabolism*
  • Eye Proteins / metabolism
  • Glucosides / metabolism*
  • Hesperidin / analogs & derivatives*
  • Hesperidin / metabolism
  • Lens, Crystalline / metabolism*
  • Mice
  • Presbyopia / metabolism*

Substances

  • Aquaporins
  • Eye Proteins
  • Glucosides
  • glucosyl hesperidin
  • Hesperidin