Development of Wearable Textile MIMO Antenna for Sub-6 GHz Band New Radio 5G Applications

Micromachines (Basel). 2024 May 15;15(5):651. doi: 10.3390/mi15050651.

Abstract

In this paper, an irregular octagonal two-port MIMO patch antenna is designed specifically for New Radio (NR) 5G applications in the mid-band sub-6 GHz. The proposed antenna comprises an irregularly shaped patch antenna equipped with a regular 50-ohm feed line and a parasitic strip line antenna, and is partially grounded. Jeans material serves as a substrate with an effective dielectric constant of 1.6 and a thickness of 1 mm. This material is studied experimentally. The proposed antenna design undergoes analysis and optimization using the ANSYS HFSS tool. Furthermore, the design incorporates the influence of the slot on both the ground plane and the parasitic strip line to optimize performance, enhance isolation, and improve impedance matching among antenna elements. The dimensions of the jeans substrate are 40 mm × 50 mm. The simulated impedance bandwidth ranged from 3.6 GHz to 7 GHz and the measured bandwidth was slightly narrower, from 4.35 GHz to 7 GHz. The simulation results demonstrated an isolation level greater than 12 dB between antenna elements, while the measured results reached 28.5 dB, and the peak gain for this proposed antenna stood at 6.74 dB. These qualities made this proposed antenna suitable for various New Radio mid-band 5G wireless applications within the sub-6 GHz band, such as N79, Wi-Fi-5/6, V2X, and DSRC applications.

Keywords: HFSS; MIMO; irregular octagon; jeans; return loss; substrate.