Novel Carboxymethyl Cellulose-Based Hydrogel with Core-Shell Fe3O4@SiO2 Nanoparticles for Quercetin Delivery

Materials (Basel). 2022 Dec 7;15(24):8711. doi: 10.3390/ma15248711.

Abstract

A nanocomposite composed of carboxymethyl cellulose (CMC) and core-shell nanoparticles of Fe3O4@SiO2 was prepared as a pH-responsive nanocarrier for quercetin (QC) delivery. The nanoparticles were further entrapped in a water-in-oil-in-water emulsion system for a sustained release profile. The CMC/Fe3O4@SiO2/QC nanoparticles were characterized using dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), a field emission scanning electron microscope (FE-SEM), and a vibrating sample magnetometer (VSM) to obtain insights into their size, stability, functional groups/chemical bonds, crystalline structure, morphology, and magnetic properties, respectively. The entrapment and loading efficiency were slightly improved after the incorporation of Fe3O4@SiO2 NPs within the hydrogel network. The dialysis method was applied for drug release studies. It was found that the amount of QC released increased with the decrease in pH from 7.4 to 5.4, while the sustained-release pattern was preserved. The A549 cell line was chosen to assess the anticancer activity of the CMC/Fe3O4@SiO2/QC nanoemulsion and its components for lung cancer treatment via an MTT assay. The L929 cell line was used in the MTT assay to determine the possible side effects of the nanoemulsion. Moreover, a flow cytometry test was performed to measure the level of apoptosis and necrosis. Based on the obtained results, CMC/Fe3O4@SiO2 can be regarded as a novel promising system for cancer therapy.

Keywords: Fe3O4 nanoparticles; carboxymethyl cellulose; core–shell nanoparticles; double-emulsion system; quercetin.