PVC Membrane Sensors for Potentiometric Determination of Acebutolol

Sensors (Basel). 2007 Dec 13;7(12):3272-3286. doi: 10.3390/s7123272.

Abstract

The construction and general performance characteristics of two novelpotentiometric membrane sensors responsive to the acebutolol are described. Thesensors are based on the use of ion-association complexes of acebutolol (AC) withtetraphenylborate(TPB) (I) and phosphomolybdate(PM) (II) as exchange sites in a PVCmatrix. The sensors show a fast, stable and near- Nernstian for the mono charge cationof AC over the concentration range 1×10-3 - ~10-6 M at 25 °C over the pH range 2.0 -6.0 with cationic slope of 51.5 ± 0.5 and 53.0 ± 0.5 per concentration decade for AC-Iand AC-II sensors respectively. The lower detection limit is 6×10-6 M and 4×0-6 M withthe response time 20-30 s in the same order of both sensors. Selectivity coefficients ofAC related to a number of interfering cation and some organic compounds wereinvestigated. There are negligible interferences are caused by most of the investigatedspecies. The direct determination of 3 - 370 μg/ml of AC shows an average recovery of 99.4 and 99.5% and a mean relative standard deviation of 1 . 5 % at 100.0 μg/ml forsensor I and II respectively. The results obtained by determination of AC in tablets usingthe proposed sensors which comparable favorably with those obtained by the Britishpharmacopoeia method. In the present investigation the electrodes have been utilized asend point indicator for some precipitation titration reactions.

Keywords: Acebutolol; PVC; Phosphomolybdic acid; Potentiometry.; Sodium tetraphenylborate.