Surface-Modified Gold Nanoparticles with Folic Acid as Optical Probes for Cellular Imaging

Sensors (Basel). 2008 Oct 24;8(10):6660-6673. doi: 10.3390/s8106660.

Abstract

In this study, we demonstrate that the uptake rate of the surface-modified gold nanoparticles (GNPs) with folic acid by specific cells can be increased significantly, if the membranes of these cells have sufficient folic-acid receptors. Two human breast cancer cell lines were studied; one is MDA-MB-435S cell, and the other T-47D cell. The expression of the folic acid receptors of the former is much higher than that of the latter. These cells were incubated with media containing bare GNPs or GNPs conjugated with folic acid individually. Due to the unique optical behavior (i.e. surface plasmon resonance) of GNPs, the uptake amount of GNPs by cells can be identified by using the laser scanning confocal microscopy. Our experiments show that the uptake amount of GNPs in MDAMB-435S cells is higher than that in T-47D cells for the same culture time, if the culture medium contains bare GNPs. Moreover, if the GNPs conjugated with folic acid are used for the culture, the uptake rate of GNPs by MDA-MB-435S cells is improved more. In contrast, the uptake rates of both GNPs are almost the same by T-47D cells. The phenomenon indicates that the uptake rate of GNPs can be improved via the ligand-receptor endocytosis, compared with the nonspecific endocytosis. Therefore, the uptake rate of GNPs conjugated with folic acid by MDA-MB-435S cells is higher than that of bare GNPs.

Keywords: Gold nanoparticles; folic acid; laser scanning confocal microscopy; ligandreceptor endocytosis; surface plasmon resonance..