Histopathological Gastric Cancer Detection on GasHisSDB Dataset Using Deep Ensemble Learning

Diagnostics (Basel). 2023 May 18;13(10):1793. doi: 10.3390/diagnostics13101793.

Abstract

Gastric cancer is a leading cause of cancer-related deaths worldwide, underscoring the need for early detection to improve patient survival rates. The current clinical gold standard for detection is histopathological image analysis, but this process is manual, laborious, and time-consuming. As a result, there has been growing interest in developing computer-aided diagnosis to assist pathologists. Deep learning has shown promise in this regard, but each model can only extract a limited number of image features for classification. To overcome this limitation and improve classification performance, this study proposes ensemble models that combine the decisions of several deep learning models. To evaluate the effectiveness of the proposed models, we tested their performance on the publicly available gastric cancer dataset, Gastric Histopathology Sub-size Image Database. Our experimental results showed that the top 5 ensemble model achieved state-of-the-art detection accuracy in all sub-databases, with the highest detection accuracy of 99.20% in the 160 × 160 pixels sub-database. These results demonstrated that ensemble models could extract important features from smaller patch sizes and achieve promising performance. Overall, our proposed work could assist pathologists in detecting gastric cancer through histopathological image analysis and contribute to early gastric cancer detection to improve patient survival rates.

Keywords: convolutional neural network; deep learning; ensemble model; gastric cancer; histopathology; transfer learning.