Antibacterial, anti-efflux, anti-biofilm, anti-slime (exopolysaccharide) production and urease inhibitory efficacies of novel synthesized gold nanoparticles coated Anthemis atropatana extract against multidrug- resistant Klebsiella pneumoniae strains

Arch Microbiol. 2020 Oct;202(8):2105-2115. doi: 10.1007/s00203-020-01930-y. Epub 2020 Jun 4.

Abstract

In this study, the antibacterial, anti-efflux, anti-biofilm, anti-slime (exopolysaccharide) production and urease inhibitory efficacies of green synthesized gold nanoparticles (AuNPs) coated Anthemis atropatana extract against multidrug- resistant (MDR) Klebsiella pneumoniae strains were evaluated. The green synthesized AuNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometer (XRD), particle size distribution, zeta potential and Fourier-transform infrared spectroscopy (FTIR). Then, antibacterial, anti-slime (exopolysaccharide) production, anti-biofilm and anti-efflux activities of AuNPs were investigated using micro-dilation, Congored agar, microtiter plate and MIC of ethidium bromide methods, respectively. Subsequently, the expression of mrkA, wzm and acrB genes was evaluated using quantitative Real-Time PCR (qRT-PCR). The synthesized AuNPs exhibited antibacterial activity against MDR strains of K. pneumoniae (minimum inhibitory concentration (MIC) of 6.25-50 µg/ml), as well as showed significant anti-slime (exopolysaccharide) production, anti-biofilm and anti-efflux activities against MDR strains. AuNPs showed significant inhibition against jack-bean urease and down-regulated the expression of mrkA, wzm and acrB genes. Moreover, the in vitro cytotoxic activity confirmed by MTT assay on the HEK-293 normal cell line showed negligible cytotoxicity. Thus, the present study suggests the potential use of AuNPs in the development of novel therapeutics for the prevention of biofilm-associated K. pneumoniae infections.

Keywords: Anti-biofilm; Antibacterial; Gold nanoparticles; Klebsiella pneumoniae; Multidrug- resistant.

MeSH terms

  • Anthemis / chemistry*
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Biofilms / drug effects
  • Drug Resistance, Multiple / drug effects*
  • Enzyme Activation / drug effects
  • Gene Expression Regulation / drug effects
  • Gold / chemistry
  • Gold / pharmacology*
  • HEK293 Cells
  • Humans
  • Klebsiella pneumoniae / drug effects*
  • Metal Nanoparticles* / chemistry
  • Microbial Sensitivity Tests
  • Plant Extracts / chemistry
  • Plant Extracts / pharmacology*
  • Urease / metabolism

Substances

  • Anti-Bacterial Agents
  • Plant Extracts
  • Gold
  • Urease