The exposure of the Great Barrier Reef to ocean acidification

Nat Commun. 2016 Feb 23:7:10732. doi: 10.1038/ncomms10732.

Abstract

The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anthozoa / metabolism*
  • Calcium Carbonate / metabolism*
  • Coral Reefs*
  • Hydrodynamics
  • Hydrogen-Ion Concentration
  • Models, Biological
  • Models, Chemical
  • Oceans and Seas
  • Seawater / chemistry*

Substances

  • Calcium Carbonate