Structure and magnetism of the Rh4+-containing perovskite oxides La0.5Sr0.5Mn0.5Rh0.5O3 and La0.5Sr0.5Fe0.5Rh0.5O3

Dalton Trans. 2020 Aug 18;49(32):11346-11353. doi: 10.1039/d0dt02466j.

Abstract

Synchrotron X-ray powder diffraction data indicate that La0.5Sr0.5Mn0.5Rh0.5O3 and La0.5Sr0.5Fe0.5Rh0.5O3 adopt distorted perovskite structures (space group Pnma) with A-site and B-site cation disorder. A combination of XPS and 57Fe Mössbauer data indicate the transition metal cations in the two phases adopt Mn3+/Rh4+ and Fe3+/Rh4+ oxidation state combinations respectively. Transport data indicate both phases are insulating, with ρ vs. T dependences consistent with 3D variable-range hopping. Magnetisation data reveal that La0.5Sr0.5Mn0.5Rh0.5O3 adopts a ferromagnetic state below Tc ∼ 60 K, which is rationalized on the basis of coupling via a dynamic Jahn-Teller distortion mechanism. In contrast, magnetic data reveal La0.5Sr0.5Fe0.5Rh0.5O3 undergoes a transition to a spin-glass state at T ∼ 45 K, attributed to frustration between nearest-neighbour Fe-Rh and next-nearest-neighbour Fe-Fe couplings.