Achieving High Strength and Creep Resistance in Inconel 740H Superalloy through Wire-Arc Additive Manufacturing and Thermodynamic-Guided Heat Treatment

Materials (Basel). 2023 Sep 25;16(19):6388. doi: 10.3390/ma16196388.

Abstract

Inconel 740H superalloy is commonly used in advanced ultra-supercritical power plants since it possesses excellent strength and creep resistance. This study investigates the microstructure and mechanical properties of Inconel 740H superalloy fabricated using wire-arc additive manufacturing. The as-printed microstructure consisted of columnar γ grains with the Laves phase and (Nb, Ti)C carbides as secondary phases. The anisotropy in grain structure increased from the bottom to the top regions, while the hardness was highest in the middle portion of the build. To guide the post-heat treatment design, thermodynamic and kinetic simulations were employed to predict the temperature and time. Complete recrystallization with the Laves phase dissolution occurred throughout the build after homogenization at 1200 °C for 2 h. The peak hardness was achieved after aging at 760 °C for 12 h with the M23C6 carbides decorating the grain boundaries and γ' precipitates in the grain interior. The yield strength (655 MPa) and ductility (29.5%) in the post-heat treated condition exceeded the design targets (620 MPa, 20%). Stress rupture tests at 750 °C showed that the high-temperature performance was at par with the wrought counterparts. The fracture mode after rupture was identified to be intergranular with the presence of grain boundary cavities along with grain boundary sliding.

Keywords: CALPHAD; anisotropy; diffusion; recrystallization; stress rupture.