Comprehensive Chemical Dust Suppressant Performance Evaluation and Optimization Method

Int J Environ Res Public Health. 2022 May 5;19(9):5617. doi: 10.3390/ijerph19095617.

Abstract

Chemical dust suppression is an effective dust control technology. A dust suppressant component evaluation method that facilitates a complete selection of safe, efficient, and economical chemical materials has not been explored. Considering dust suppression performance, environmental safety, and cost-effectiveness of chemical dust suppressant technology, this study constructs a comprehensive evaluation index system of chemical dust suppressant performance, including the wetting performance, hygroscopic performance, bonding performance, annual cost per unit area, pH value of dust suppression solution, chemical toxicity, and chemical corrosion. Among them, the index characterizing the wetting performance of the solution is the sedimentation wetting time, which is determined by the dust sedimentation experiment; the index characterizing the hygroscopic performance of the solution is the evaporation stability time, which is determined by the evaporation experiment of the solution on the dust surface; the index to characterize the bonding performance of the solution is the surface wind erosion rate, which is determined by the wind erosion experiment of the solution on the dust surface; the toxicity of the solution is evaluated by the LD50 of the solution; the index to characterize the corrosion performance of the solution is the Q235 monthly steel corrosion rate, which is determined by the Q235 steel corrosion test. Corresponding evaluation parameters are determined including sedimentation wetting time, evaporation stabilization time, surface wind erosion rate; annual average use cost per unit area; solution pH value, chemical acute toxicity classification, monthly corrosion rate of Q235 steel, and corresponding standard test methods are also provided. In order to evaluate the comparability of the results, according to the specific requirements of the evaluation index system and the distribution characteristics of the measurement data, the data of each evaluation and detection index are standardized by linear transformation, range transformation and other methods, so that the obtained results are comparable. Considering the differences in the actual performance requirements of dust suppressants in different usage scenarios, the weights of evaluation indicators at all levels can be set independently and flexible. The experimental test data obtained through the example shows that: among the four chemicals selected to participate in the experiment, the comprehensive dust suppression performance score of Triton X-100 solution is in the poor-grade category. The comprehensive dust suppression performances of calcium chloride solution, water, and polyacrylamide solution scored high in the average-grade category. The comprehensive evaluation process is logically correct, and the results are consistent with the phenomena observed in the experiment, consistent with conventional understanding, and have strong credibility. This method can provide a standardized evaluation technique and test process for the comprehensive performance evaluation and comparison of chemical materials and dust suppressants.

Keywords: chemical dust suppression; dust pollution; dust suppression agent; evaluation method.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Coal / analysis
  • Coal Mining*
  • Dust* / analysis
  • Steel
  • Wind

Substances

  • Coal
  • Dust
  • Steel

Grants and funding

We acknowledge funding from the National Natural Science Foundation of China (No. 51674289) and the National Key Research and Development Plan of China (No. 2017YFC080520405).