Robustness of coupled networks with multiple support from functional components at different scales

Chaos. 2024 Apr 1;34(4):043122. doi: 10.1063/5.0198732.

Abstract

Robustness is an essential component of modern network science. Here, we investigate the robustness of coupled networks where the functionality of a node depends not only on its connectivity, here measured by the size of its connected component in its own network, but also the support provided by at least M links from another network. We here develop a theoretical framework and investigate analytically and numerically the cascading failure process when the system is under attack, deriving expressions for the proportion of functional nodes in the stable state, and the critical threshold when the system collapses. Significantly, our results show an abrupt phase transition and we derive the minimum inner and inter-connectivity density necessary for the system to remain active. We also observe that the system necessitates an increased density of links inside and across networks to prevent collapse, especially when conditions on the coupling between the networks are more stringent. Finally, we discuss the importance of our results in real-world settings and their potential use to aid decision-makers design more resilient infrastructure systems.