Fibrin-based stem cell containing scaffold improves the dynamics of burn wound healing

Wound Repair Regen. 2016 Sep;24(5):810-819. doi: 10.1111/wrr.12459. Epub 2016 Sep 13.

Abstract

For severe burn injuries, successful medical intervention is accomplished by rapidly and safely providing physical barriers that can cover damaged skin tissues, thereby preventing critical danger of extensive bleeding and infection. Despite availability of a large assortment of wound coverage options, the etiology of wound healing is rather complex leading to significant defects in skin repair. The use of cell-mediated treatment approaches in combination with bioengineered wound coverage constructs may provide the missing tool to improve wound healing outcomes. In this study, we have used an engineered 3D PEGylated fibrin (P-fibrin) gel as a scaffold for adipose derived stem cells (ASCs) delivery into the burn injury model. We were able to confirm the presence of ASCs in the wound site two weeks after the initial injury. Delivery of ASCs-containing gels was associated with improved vascularization of the injured area at early time points accompanied by an increased abundance of mannose receptor expressing cells. Moreover, the application of P-fibrin biomaterial exhibited positive effects on early mononuclear cell recruitment and granulation tissue formation without negatively affecting wound closure kinetics or extent of connective tissue deposition. Collectively, our data support the feasibility of using P-fibrin gels in wound dressing applications requiring controlled delivery of viable cells.