Range camera self-calibration based on integrated bundle adjustment via joint setup with a 2D digital camera

Sensors (Basel). 2011;11(9):8721-40. doi: 10.3390/s110908721. Epub 2011 Sep 8.

Abstract

Time-of-flight cameras, based on photonic mixer device (PMD) technology, are capable of measuring distances to objects at high frame rates, however, the measured ranges and the intensity data contain systematic errors that need to be corrected. In this paper, a new integrated range camera self-calibration method via joint setup with a digital (RGB) camera is presented. This method can simultaneously estimate the systematic range error parameters as well as the interior and external orientation parameters of the camera. The calibration approach is based on photogrammetric bundle adjustment of observation equations originating from collinearity condition and a range errors model. Addition of a digital camera to the calibration process overcomes the limitations of small field of view and low pixel resolution of the range camera. The tests are performed on a dataset captured by a PMD[vision]-O3 camera from a multi-resolution test field of high contrast targets. An average improvement of 83% in RMS of range error and 72% in RMS of coordinate residual, over that achieved with basic calibration, was realized in an independent accuracy assessment. Our proposed calibration method also achieved 25% and 36% improvement on RMS of range error and coordinate residual, respectively, over that obtained by integrated calibration of the single PMD camera.

Keywords: PMD range camera; bundle adjustment; digital camera; integrated self-calibration; internal error; joint setup; range systematic error.

MeSH terms

  • Calibration
  • Photography*