Cooling Techniques for Hyperthermia

Book
In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan.
.

Excerpt

Hyperthermia is defined as a body temperature greater than 40 C. Several conditions can cause hyperthermia. In sepsis, the immunologic reaction to the infection most often manifests as a fever. Some toxic ingestions and withdrawal states can cause elevated body temperature. Certain medication reactions can also cause hyperthermia, such as in neuroleptic malignant syndrome. The most common disease that can be treated by cooling alone is heat-related illness and heat stroke.

Heat-related illness is a spectrum of diseases that occurs when the body's thermoregulatory system fails. Elevated core body temperature associated with orthostatic hypotension, tachycardia, diaphoresis, and tachypnea characterize heat exhaustion. Heatstroke is defined as elevated core body temperature plus central nervous system involvement (delirium, decreased the level of consciousness, or ataxia). Heat-related illness most often affects athletes (exertional hyperthermia), but can also occur during the warm weather months or in locations with extreme temperatures. Patients with impaired thermoregulation such as those at extremes of age, the obese, or the mentally ill are at higher risk. The definitive treatment for heat-related illness is total body cooling.

Conduction and evaporation are the two modes of cooling employed in the treatment of heat-related illnesses. Studies have shown ice-water immersion to be the most rapidly effective. However, there are obvious barriers to performing this in an emergency department. Marathons and other athletic events that see frequent heat-related illness sometimes have this capability. Evaporation (mist and fan) is the second most rapid way to cool a patient. Ice packs to the groin, axilla, neck, and areas near other great vessels have been shown to be less effective. Cooled intravenous fluids have been studied, but there is no clear consensus on their benefit (preservation of neurologic function) versus potential harm (induced shivering), but they may be considered. This activity will discuss the procedure for performing evaporative cooling with other adjunct methods in the emergency department.

Of note, there are commercially available products designed for cooling; these range from invasive cooling catheters to non-invasive adhesive pads that circulate chilled water. These devices were designed for targeted hypothermia post-cardiac arrest. However, they can be used for heat-related illnesses when available. There is limited literature comparing these devices to the traditional methods.

The priority in heat-related illness is early recognition and intervention. Military and sports literature has identified 40 C as the target, and the faster the target is achieved, the lower the patient mortality.

Publication types

  • Study Guide