Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance

Sensors (Basel). 2008 Jan 21;8(1):236-255. doi: 10.3390/s8010236.

Abstract

Reducing the risk of oil spill disasters is essential for protecting the environmentand reducing economic losses. Oil spill surveillance constitutes an important component ofoil spill disaster management. Advances in remote sensing technologies can help to identifyparties potentially responsible for pollution and to identify minor spills before they causewidespread damage. Due to the large number of sensors currently available for oil spillsurveillance, there is a need for a comprehensive overview and comparison of existingsensors. Specifically, this paper examines the characteristics and applications of differentsensors. A better understanding of the strengths and weaknesses of oil spill surveillancesensors will improve the operational use of these sensors for oil spill response andcontingency planning. Laser fluorosensors were found to be the best available sensor for oilspill detection since they not only detect and classify oil on all surfaces but also operate ineither the day or night. For example, the Scanning Laser Environmental AirborneFluorosensor (SLEAF) sensor was identified to be a valuable tool for oil spill surveillance.However, no single sensor was able to provide all information required for oil spillcontingency planning. Hence, combinations of sensors are currently used for oil spillsurveillance. Specifically, satellite sensors are used for preliminary oil spill assessmentwhile airborne sensors are used for detailed oil spill analysis. While satellite remote sensingis not suitable for tactical oil spill planning it can provide a synoptic coverage of theaffected area.

Keywords: Airborne Sensors; Contingency Planning; Disaster Management; Oil Spill Surveillance; Remote Sensing; Space-borne Sensors.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't