Incorporating Industrial By-Products into Geopolymer Mortar: Effects on Strength and Durability

Materials (Basel). 2023 Jun 15;16(12):4406. doi: 10.3390/ma16124406.

Abstract

In recent years, the reuse of industrial waste has become increasingly important for sustainable development. Therefore, this study investigated the application of granulated blast furnace slag (GBFS) as a cementitious replacement material in fly-ash-based geopolymer mortar containing silica fume (GMS). The performance changes in the GMS samples manufactured with different GBFS ratios (0-50 wt%) and alkaline activators were evaluated. The results indicated that GBFS replacement from 0 wt% to 50 wt% significantly affects GMS performance, including improving the bulk density from 2235 kg/m3 to 2324 kg/m3, flexural-compressive strength from 5.83 MPa to 7.29 MPa and 63.5 MPa to 80.2 MPa, respectively; a decrease in water absorption and chloride penetration, and an improvement in the corrosion resistance of GMS samples. The GMS mixture containing 50 wt% GBFS demonstrated the best performances with notable results regarding strength and durability. Owing to the increased production of C-S-H gel, the microstructure of the GMS sample containing more GBFS was denser, as obtained via the scanning electron micrograph analysis results. Incorporating the three industrial by-products into geopolymer mortars was verified when all samples were determined to be in accordance with the relevant Vietnamese standards. The results demonstrate a promising method to manufacture geopolymer mortars that aid sustainable development.

Keywords: compressive strength; fly ash; geopolymer mortar; granulated blast furnace slag; sustainable development; workability.