Effect of Phase Changes on the Axial Modulus of an FeMnSi-Shape Memory Alloy

Materials (Basel). 2021 Aug 26;14(17):4815. doi: 10.3390/ma14174815.

Abstract

The axial modulus ESMA(κ) of FeMnSi-based shape memory alloys (FeMnSi-SMAs) is a parameter introduced in this study to characterize the relationship between stress and strain behavior at the early stage of tensile loading. ESMA(κ) can be used to correctly estimate and model the interaction forces between FeMnSi-SMAs and other materials. Unlike the conventional Young's modulus, which is usually given at room temperature, the ESMA(κ) is evaluated at different temperatures and strongly depends on phase transformation and plastic deformation. This study investigated the evolution of ESMA(κ) during and after pre-straining as well as in the course of the activation processes. The effect of different factors (e.g., phase transformation and plastic deformation) on the magnitude of ESMA(κ) is discussed. The result shows that the ESMA(κ) can differ significantly during activation and thus needs to be modified when interaction forces between FeMnSi-SMAs and other substrates materials (e.g., concrete) must be modeled and evaluated.

Keywords: FeMnSi-based shape memory alloys; activation process; axial modulus ESMA(κ); phase transformation; plastic deformation.