Viability of ectomycorrhizal fungi following cryopreservation

Fungal Biol. 2013 Feb;117(2):103-11. doi: 10.1016/j.funbio.2012.12.003. Epub 2013 Jan 4.

Abstract

The use of ectomycorrhizal (ECM) fungi in biotechnological processes requires their maintenance over long periods under conditions that maintain their genetic, phenotypic, and physiological stability. Cryopreservation is considered as the most reliable method for long-term storage of most filamentous fungi. However, this technique is not widespread for ECM fungi since many do not survive or exhibit poor recovery after freezing. The aim of this study was to develop an efficient cryopreservation protocol for the long-term storage of ECM fungi. Two cryopreservation protocols were compared. The first protocol was the conventional straw protocol (SP). The mycelium of the ECM isolates was grown in Petri dishes on agar and subsequently collected by punching the mycelium into a sterile straw before cryopreservation. In the second protocol, the cryovial protocol (CP), the mycelium of the ECM isolates was grown directly in cryovials filled with agar and subsequently cryopreserved. The same cryoprotectant solution, freezing, and thawing process, and re-growth conditions were used in both protocols. The survival (positive when at least 60 % of the replicates showed re-growth) was evaluated before and immediately after freezing as well as after 1 week, 1 m, and 6 m of storage at -130 °C. Greater survival rate (80 % for the CP as compared to 25 % for the SP) and faster re-growth (within 10 d for the CP compared to the 4 weeks for the SP) were observed for most isolates with the CP suggesting that the preparation of the cultures prior to freezing had a significant impact on the isolates survival. The suitability of the CP for cryopreservation of ECM fungi was further confirmed on a set of 98 ECM isolates and displayed a survival rate of 88 % of the isolates. Only some isolates belonging to Suillus luteus, Hebeloma crustuliniforme, Paxillus involutus and Thelephora terrestris failed to survive. This suggested that the CP is an adequate method for the ultra-low cryopreservation of a large set of ECM fungi and that further studies are necessary for the more recalcitrant ones.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cryopreservation / methods*
  • Cryoprotective Agents / pharmacology
  • Fungi / drug effects
  • Fungi / growth & development*
  • Microbial Viability* / drug effects
  • Mycelium / growth & development
  • Mycorrhizae / drug effects
  • Mycorrhizae / growth & development*

Substances

  • Cryoprotective Agents