New Green Determination of Cu, Fe, Mn, and Zn in Beetroot Juices along with Their Chemical Fractionation by Solid-Phase Extraction

Molecules. 2019 Oct 9;24(20):3645. doi: 10.3390/molecules24203645.

Abstract

A new simple and rapid method for the determination of the total concentrations of Cu, Fe, Mn, and Zn in beetroot juices by flame atomic absorption spectrometry was developed and validated. The method included a very simple sample preparation, i.e., the two-fold dilution and acidification of the samples with HNO3 to 1 mol·L-1 and provided the precision within 2%-3% and the trueness better than 6%. The method was applied for the rapid screening analysis of the different commercially available beetroot juices. The chemical fractionation of Cu, Fe, Mn, and Zn was also proposed by the two-column solid-phase extraction with the reversed-phase and cation exchange tubes. It was revealed that Cu, Fe, Mn, and Zn were primarily in beetroot juices in the form of the organically bound forms, contributing to the distinguished hydrophobic and residual fractions. The sums of the mean contributions of both fractions were up to 98% (Cu, Fe, Zn) and 100% (Mn), pointing out that no labile nor unbound forms of the studied metals were present in the matrix of beetroot juices.

Keywords: beetroot juice; chemical fractionation; flame atomic absorption spectrometry; microelements; sample preparation; solid-phase extraction.

MeSH terms

  • Chemical Fractionation*
  • Copper / chemistry
  • Fruit and Vegetable Juices / analysis*
  • Iron / chemistry
  • Manganese / chemistry
  • Metals, Heavy / analysis*
  • Metals, Heavy / chemistry
  • Solid Phase Extraction*
  • Zinc / chemistry

Substances

  • Metals, Heavy
  • Manganese
  • Copper
  • Iron
  • Zinc