Impact of SNPs in ACACA, SCD1, and DGAT1 Genes on Fatty Acid Profile in Bovine Milk with Regard to Lactation Phases

Animals (Basel). 2020 Jun 8;10(6):997. doi: 10.3390/ani10060997.

Abstract

Milk fat is a dietary source of fatty acids (FA), which can be health promoting or can increase risks of some diseases. FA profile composition depends on many factors, among them gene polymorphism. This study analyzed the relation between polymorphism of acetyl-CoA carboxylase α (ACACA), stearoyl-CoA desaturase 1 (SCD1), diacylglycerol acyltransferase 1 (DGAT1) genes with FA profile in milk from Polish Holstein-Friesian cattle and determined changes of FA percentage during lactation with regard to polymorphism. Milk samples were collected twice: during the first phase of lactation (<90 Days in milk; DIM) and at the end of lactation (>210 DIM). During the first milk collection, blood samples were taken to analyze three chosen single nucleotide polymorphisms (SNPs): AJ312201.1g.1488C > G SNP in ACACA gene, A293V SNP in SCD1 gene, and K232A SNP in DGAT1 gene. Increased concentration of FA that are less beneficial for human health and have lower concentration of healthy FA in homozygotes: GG in ACACA, VV in SCD1, and KK in DGAT1 were observed, as well as a strong influence of the analyzed genes on FA with 18C atoms was also found. Moreover, it was demonstrated that lactation phase significantly affected FA percentage in milk depending on the phenotype. These results may contribute their part to knowledge toward obtaining more beneficial milk composition.

Keywords: ACACA; DGAT1; SCD1; SNPs; cattle; fatty acid; milk.