Higgs Amplitudes from N=4 Supersymmetric Yang-Mills Theory

Phys Rev Lett. 2017 Oct 20;119(16):161601. doi: 10.1103/PhysRevLett.119.161601. Epub 2017 Oct 16.

Abstract

Higgs plus multigluon amplitudes in QCD can be computed in an effective Lagrangian description. In the infinite top-mass limit, an amplitude with a Higgs boson and n gluons is computed by the form factor of the operator TrF^{2}. Up to two loops and for three gluons, its maximally transcendental part is captured entirely by the form factor of the protected stress tensor multiplet operator T_{2} in N=4 supersymmetric Yang-Mills theory. The next order correction involves the calculation of the form factor of the higher-dimensional, trilinear operator TrF^{3}. We present explicit results at two loops for three gluons, including the subleading transcendental terms derived from a particular descendant of the Konishi operator that contains TrF^{3}. These are expressed in terms of a few universal building blocks already identified in earlier calculations. We show that the maximally transcendental part of this quantity, computed in nonsupersymmetric Yang-Mills theory, is identical to the form factor of another protected operator, T_{3}, in the maximally supersymmetric theory. Our results suggest that the maximally transcendental part of Higgs amplitudes in QCD can be entirely computed through N=4 super Yang-Mills theory.