Sensorimotor Cortical Activity during Respiratory Arousals in Obstructive Sleep Apnea

Int J Mol Sci. 2022 Dec 20;24(1):47. doi: 10.3390/ijms24010047.

Abstract

Intensity of respiratory cortical arousals (RCA) is a pathophysiologic trait in obstructive sleep apnea (OSA) patients. We investigated the brain oscillatory features related to respiratory arousals in moderate and severe OSA. Raw electroencephalography (EEG) data recorded during polysomnography (PSG) of 102 OSA patients (32 females, mean age 51.6 ± 12 years) were retrospectively analyzed. Among all patients, 47 had moderate (respiratory distress index, RDI = 15−30/h) and 55 had severe (RDI > 30/h) OSA. Twenty RCA per sleep stage in each patient were randomly selected and a total of 10131 RCAs were analyzed. EEG signals obtained during, five seconds before and after the occurrence of each arousal were analyzed. The entropy (approximate (ApEn) and spectral (SpEn)) during each sleep stage (N1, N2 and REM) and area under the curve (AUC) of the EEG signal during the RCA was computed. Severe OSA compared to moderate OSA patients showed a significant decrease (p < 0.0001) in the AUC of the EEG signal during the RCA. Similarly, a significant decrease in spectral entropy, both before and after the RCA was observed, was observed in severe OSA patients when compared to moderate OSA patients. Contrarily, the approximate entropy showed an inverse pattern. The highest increase in approximate entropy was found in sleep stage N1. In conclusion, the dynamic range of sensorimotor cortical activity during respiratory arousals is sleep-stage specific, dependent on the frequency of respiratory events and uncoupled from autonomic activation. These findings could be useful for differential diagnosis of severe OSA from moderate OSA.

Keywords: approximate entropy; cortical activity; obstructive sleep apnea; respiratory arousal; spectral entropy.

MeSH terms

  • Adult
  • Arousal / physiology
  • Female
  • Humans
  • Middle Aged
  • Polysomnography
  • Retrospective Studies
  • Sleep Apnea, Obstructive*
  • Sleep Stages / physiology

Grants and funding

This research received no external funding.