A Semi-Supervised Approach for Improving Generalization in Non-Intrusive Load Monitoring

Sensors (Basel). 2023 Jan 28;23(3):1444. doi: 10.3390/s23031444.

Abstract

Non-intrusive load monitoring (NILM) considers different approaches for disaggregating energy consumption in residential, tertiary, and industrial buildings to enable smart grid services. The main feature of NILM is that it can break down the bulk electricity demand, as recorded by conventional smart meters, into the consumption of individual appliances without the need for additional meters or sensors. Furthermore, NILM can identify when an appliance is in use and estimate its real-time consumption based on its unique consumption patterns. However, NILM is based on machine learning methods and its performance is dependent on the quality of the training data for each appliance. Therefore, a common problem with NILM systems is that they may not generalize well to new environments where the appliances are unknown, which hinders their widespread adoption and more significant contributions to emerging smart grid services. The main goal of the presented research is to apply a domain adversarial neural network (DANN) approach to improve the generalization of NILM systems. The proposed semi-supervised algorithm utilizes both labeled and unlabeled data and was tested on data from publicly available REDD and UK-DALE datasets. The results show a 3% improvement in generalization performance on highly uncorrelated data, indicating the potential for real-world applications.

Keywords: domain adversarial neural networks; generalization; non-intrusive load monitoring; semi-supervised learning.