Anthraquinone catalysis in the glucose-driven reduction of indigo to leuco-indigo

Phys Chem Chem Phys. 2009 Mar 21;11(11):1816-24. doi: 10.1039/b814149e. Epub 2009 Jan 14.

Abstract

Anthraquinone immobilised onto the surface of indigo microcrystals enhances the reductive dissolution of indigo to leuco-indigo. Indigo reduction is driven by glucose in aqueous NaOH and a vibrating gold disc electrode is employed to monitor the increasing leuco-indigo concentration with time. Anthraquinone introduces a strong catalytic effect which is explained by invoking a molecular "wedge effect" during co-intercalation of Na+ and anthraquinone into the layered indigo crystal structure. The glucose-driven indigo reduction, which is ineffective in 0.1 M NaOH at 65 degrees C, becomes facile and goes to completion in the presence of anthraquinone catalyst. Electron microscopy of indigo crystals before and after reductive dissolution confirms a delamination mechanism initiated at the edges of the plate-like indigo crystals. Catalysis occurs when the anthraquinone-indigo mixture reaches a molar ratio of 1 : 400 (at 65 degrees C; corresponding to 3 microM anthraquinone) with excess of anthraquinone having virtually no effect. A strong temperature effect (with a composite EA approximately 120 kJ mol(-1)) is observed for the reductive dissolution in the presence of anthraquinone. The molar ratio and temperature effects are both consistent with the heterogeneous nature of the anthraquinone catalysis in the aqueous reaction mixture.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anthraquinones / chemistry*
  • Catalysis
  • Cations, Monovalent / chemistry
  • Crystallization
  • Glucose / chemistry*
  • Indigo Carmine
  • Indoles / chemistry*
  • Oxidation-Reduction
  • Sodium / chemistry

Substances

  • Anthraquinones
  • Cations, Monovalent
  • Indoles
  • Sodium
  • Indigo Carmine
  • Glucose