From Fragile to Resilient Insulation: Synthesis and Characterization of Aramid-Honeycomb Reinforced Silica Aerogel Composite Materials

Gels. 2015 Dec 22;2(1):1. doi: 10.3390/gels2010001.

Abstract

The production of a new composite material embedding aramid honeycomb materials into nano-porous silica aerogels is studied. Our aim is to improve the poor mechanical strength of silica aerogels by aramid honeycombs without losing the amazing properties of the aerogels like little density and low thermal conductivity. The composite materials were prepared using two formulations of silica aerogels in combination with aramid honeycomb materials of different cell sizes. The silica aerogels are prepared using silicon alkoxides methyltrimethoxysilane and tetraethylorthosilicate as precursors in a two-step acid⁻base sol⁻gel process. Shortly in advance of the gelation point, the aramid honeycombs were fluted by the sol, gelation occurred and, after the aging process, the gel bodies were supercritically dried. The properties of the received composite materials are satisfying. Even the thermal conductivities and the densities are a bit higher than for pure aerogels. Most importantly, the mechanical strength is improved by a factor of 2.3 compared to aramid honeycomb materials and by a factor of 10 compared to the two silica aerogels themselves. The composite materials have a good prospective to be used as an impressive insulation material.

Keywords: flexible silica aerogels; fluffy silica aerogels; honeycomb-composite; mechanical properties; thermal insulating.