How to Create Trusted Tribological Characterization Data of Soft Polymers as Input for FEM Simulations?

Materials (Basel). 2022 Dec 23;16(1):131. doi: 10.3390/ma16010131.

Abstract

Soft polymers such as the investigated polyurethane, characterized by low Young's moduli and prone to high shear deflection, are frequently applied in pneumatic cylinders. Their performance and lifetime without external lubrication are highly determined by the friction between seal and shaft and the wear rate. FEM simulation has established itself as a tool in seal design processes but requires input values for friction and wear depending on material, load, and velocity. This paper presents a tribological test configuration for long stroke, reciprocating movement, allowing the generation of data which meet the requirements of input parameters for FEM simulations without the geometrical influences of specific seal profiles. A numerical parameter study, performed with an FEM model, revealed the most eligible sample geometry as a flat, disc-shaped sample of the polymer glued on a stiff sample holder. At the same time, the study illustrates that the sensitivity of the contact pressure distribution to Poisson's ratio and CoF can be minimized by the developed and verified setup. It ensures robust, reliable, and repeatable experimental results with uniform contact pressures and constant contact areas to be used in databases and FEM simulations of seals, enabling upscaling from generically shaped samples to complex seal profiles.

Keywords: FEM; digital twin; friction; material upscaling; modelling; polymer seals; simulation input data; soft polyurethane; tribology; wear.