A comparative cradle-to-gate life cycle assessment of geopolymer concrete produced from industrial side streams in comparison with traditional concrete

Sci Total Environ. 2023 Mar 20:865:161230. doi: 10.1016/j.scitotenv.2022.161230. Epub 2022 Dec 28.

Abstract

Traditional concrete production is a major contributor to global warming. Industrially produced geopolymer concrete is a viable substitute to limit the negative impacts of concrete production. Thus, this study developed novel geopolymer concrete mix designs using industrial side streams, such as bark boiler ash, construction and demolition waste (CDW), fibre waste, and mine tailings. A cradle-to-gate life cycle assessment (LCA) methodology was conducted to evaluate the potential impacts of these different geopolymer concrete (GPC) mix designs in comparison with traditional concrete. The results showed that industrial-based geopolymer concrete with lower amounts of sodium silicate and metakaolin exhibited better environmental performance. Specifically, a 10 % reduction in metakaolin content reduces the global warming impact by 16 % compared with traditional concrete. The processing and curing of industrial waste for concrete formulations has an environmental impact of less than 1 %. From a sustainability perspective, the environmental performance of geopolymer concrete produced from industrial side streams can be further improved by increasing the concentration of recycled waste in the concrete mixes. In addition, the effective use of industrial side streams can improve the waste management, sustainability, and strength of concrete.

Keywords: Construction and demolition waste; Geopolymer concrete; Industrial side streams; Life cycle assessment; Traditional concrete.