Bonding of Core Build-Up Composites with Glass Fiber-Reinforced Posts

Dent J (Basel). 2019 Nov 5;7(4):105. doi: 10.3390/dj7040105.

Abstract

The purpose of this study was to investigate the bonding capacity of composite core build-up materials with prefabricated glass fiber-reinforced posts possessing different coronal morphologies. Five post types (Archimede Line (ARL), Fibrekleer (FBK), Glassix (GLX), Matrix Plus (MTP), and ParaPost White (PRW) and three core build-up materials (ClearfilPhoto Core (CPC), ClearfilDC Core (CDC), ClearfilNew Bond (CNB) of different curing modes (light-, self-, dual-cured respectively) were selected. The coronal part was embedded in the core build-up materials and the specimens were loaded under tensile force up to failure. The reliability (β) and characteristic life (σο, in Ν) of the debonding force were evaluated by Weibull statistics and the debonded specimens were subjected to failure mode analysis. The results showed that ARL, MPT posts were the most and GLX the least retentive, despite the core build-up material used. CPC provided the highest retention with four posts (FBK, GLX, MTP, and PRW), without statistically significant differences from CDC in two (FBK and MTP) and CNB in one (PRW). CPC and CDC were the most reliable core materials for two posts (ARL and PRW), with no statistically significant difference from CNB in three (FBK, GLX, and MTP). GLX and PRW demonstrated the highest (93%) incidence of post detachment from core, whereas FBK demonstrated the highest percentage of core material fracture, with most fractures occurring in CDC (57%). Post fractures were most prominent in MTP when combined with CNB. The presence of specific coronal retentive features did not essentially ensure increased strength with the core material, due to their delamination.

Keywords: FRC posts; bond strength; core build-up composites; failure mode.