Mitochondrial phylogeography and molecular evolution of the rhodopsin visual pigment in troglobitic populations of Astyanax mexicanus (De Filippi, 1853)

Zool Res. 2023 Jul 18;44(4):761-775. doi: 10.24272/j.issn.2095-8137.2022.437.

Abstract

Cave-adapted animals provide a unique opportunity to study the evolutionary mechanisms underlying phenotypic, metabolic, behavioral, and genetic evolution in response to cave environments. The Mexican tetra ( Astyanax mexicanus) is considered a unique model system as it shows both surface and cave-dwelling morphs. To date, at least 33 different cave populations have been identified, with phylogenetic studies suggesting an origin from at least two independent surface lineages, thereby providing a unique opportunity to study parallel evolution. In the present study, we carried out the most exhaustive phylogeographic study of A. mexicanus to date, including cave and surface localities, using two mitochondrial markers (cytochrome b (cyt b) and cytochrome c oxidase subunit I ( COI)) and nuclear rhodopsin visual pigment ( rho). Additionally, we inferred the molecular evolution of rho within the two contrasting environments (cave and surface) and across three geographic regions (Sierra de El Abra, Sierra de Guatemala, and Micos). In total, 267 individuals were sequenced for the two mitochondrial fragments and 268 individuals were sequenced for the rho visual pigment from 22 cave and 46 surface populations. Phylogeographic results based on the mitochondrial data supported the two-lineage hypothesis, except for the Pachón and Chica caves, whose introgression has been largely documented. The Sierra de El Abra region depicted the largest genetic diversity, followed by the Sierra de Guatemala region. Regarding the phylogeographic patterns of rho, we recovered exclusive haplogroups for the Sierra de El Abra (Haplogroup I) and Sierra de Guatemala regions (Haplogroup IV). Moreover, a 544 bp deletion in the rho gene was observed in the Escondido cave population from Sierra de Guatemala, reducing the protein from seven to three intramembrane domains. This change may produce a loss-of-function (LOF) but requires further investigation. Regarding nonsynonymous ( dN) and synonymous ( dS) substitution rates (omega values ω), our results revealed the prevailing influence of purifying selection upon the rho pigment for both cave and surface populations (ω<1), but relaxation at the El Abra region. Notably, in contrast to the other two regions, we observed an increase in the number of dN mutations for Sierra de El Abra. However, given that a LOF was exclusively identified in the Sierra de Guatemala region, we cannot dismiss the possibility of a pleiotropic effect on the Rho protein.

适应洞穴的动物提供了一个独特的机会来研究应对洞穴环境的表型、代谢和遗传进化的机制。墨西哥脂鲤( Astyanax mexicanus)被认为是一个独特的模型系统,因表现出地表和洞穴两种生存形式。迄今为止,至少有33个不同的洞穴种群被确认,系统发育研究表明它们至少起源于两个独立的地表系,从而为研究平行进化提供了一个独特的机会。在该研究中,我们利用两个线粒体标记(细胞色素 b (cyt b) 和细胞色素 c 氧化酶亚基 I ( COI))和核视紫红质视觉色素( rho),对墨西哥丽脂鲤进行了迄今为止最详尽的系统发育地理学研究,包括洞穴和地表聚居地。此外,我们还推断了 rho在两种截然不同的环境(洞穴和地表)和三个地理区域((Sierra de El Abra, Sierra de Guatemala和Micos)的分子进化。总共对来自22个洞穴和46个地表种群的267个个体进行了两个线粒体片段的测序,268个个体进行了 rho视觉色素的测序。基于线粒体数据的系统地理学结果支持两种谱系假说,但Pachón 和 Chica洞穴除外,两个穴居种群的基因渗入已被大量记载。Sierra de E1 Abra地区描述了最大的遗传多样性,其次是Sierra de Guatemala 地区。关于 rho的系统地理学模式,我们在Sierra de El Abra (I组)和Sierra de Guatemala 地区(IV组)找到了独有的组群。此外,在危地马拉山脉的Escondido洞穴种群中观察到 rho基因有544bp的缺失,使蛋白质从 7 个膜内结构域减少到 3 个。这一变化可能产生功能缺失(LOF),但需要进一步调查。关于非同义 (dN) 和同义 (dS) 替代率(ω值),我们的研究结果显示,洞穴和地表种群的rho色素普遍受到了负选择的影响(ω<1),但在E1 Abra地区有所放松。值得注意的是,与其他两个地区相比,我们观察到Sierra de El Abra的dN突变的数量有所增加。然而,鉴于Sierra de Guatemala地区只发现了一个LOF,我们不能排除对Rho蛋白产生多效性影响的可能性。.

Keywords: Cavefish; Loss of function; Selection; Vision loss; Visual pigments.

MeSH terms

  • Animals
  • Characidae* / genetics
  • Evolution, Molecular
  • Phylogeny
  • Phylogeography
  • Rhodopsin* / genetics

Substances

  • Rhodopsin

Associated data

  • GENBANK/OQ885509,OQ885511-OQ885517,OQ885519-OQ885543,OQ885545-OQ886052,OQ909540

Grants and funding

This research was supported by the Project No. 191986, Fronteras de la Ciencia - CONACyT and Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT), UNAM No. IN212419