Machine Learning Approach for Analyzing 3-Year Outcomes of Patients with Brain Arteriovenous Malformation (AVM) after Stereotactic Radiosurgery (SRS)

Diagnostics (Basel). 2023 Dec 22;14(1):22. doi: 10.3390/diagnostics14010022.

Abstract

A cerebral arteriovenous malformation (AVM) is a tangle of abnormal blood vessels that irregularly connects arteries and veins. Stereotactic radiosurgery (SRS) has been shown to be an effective treatment for AVM patients, but the factors associated with AVM obliteration remains a matter of debate. In this study, we aimed to develop a model that can predict whether patients with AVM will be cured 36 months after intervention by means of SRS and identify the most important predictors that explain the probability of being cured. A machine learning (ML) approach was applied using decision tree (DT) and logistic regression (LR) techniques on historical data (sociodemographic, clinical, treatment, angioarchitecture, and radiosurgery procedure) of 202 patients with AVM who underwent SRS at the Instituto de Radiocirugía del Perú (IRP) between 2005 and 2018. The LR model obtained the best results for predicting AVM cure with an accuracy of 0.92, sensitivity of 0.93, specificity of 0.89, and an area under the curve (AUC) of 0.98, which shows that ML models are suitable for predicting the prognosis of medical conditions such as AVM and can be a support tool for medical decision-making. In addition, several factors were identified that could explain whether patients with AVM would be cured at 36 months with the highest likelihood: the location of the AVM, the occupation of the patient, and the presence of hemorrhage.

Keywords: artificial intelligence; brain arteriovenous malformation; decision tree; logistic regression; machine learning; prediction; prognosis.

Grants and funding

This research received no external funding.