Blowup phenomena for the compressible euler and euler-poisson equations with initial functional conditions

ScientificWorldJournal. 2014:2014:580871. doi: 10.1155/2014/580871. Epub 2014 Mar 30.

Abstract

We study, in the radial symmetric case, the finite time life span of the compressible Euler or Euler-Poisson equations in R (N) . For time t ≥ 0, we can define a functional H(t) associated with the solution of the equations and some testing function f. When the pressure function P of the governing equations is of the form P = Kρ (γ) , where ρ is the density function, K is a constant, and γ > 1, we can show that the nontrivial C (1) solutions with nonslip boundary condition will blow up in finite time if H(0) satisfies some initial functional conditions defined by the integrals of f. Examples of the testing functions include r (N-1)ln(r + 1), r (N-1) e (r) , r (N-1)(r (3) - 3r (2) + 3r + ε), r (N-1)sin((π/2)(r/R)), and r (N-1)sinh r. The corresponding blowup result for the 1-dimensional nonradial symmetric case is also given.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • Models, Theoretical*