Three-dimensional tracking of multiple skin-colored regions by a moving stereoscopic system

Appl Opt. 2004 Jan 10;43(2):366-78. doi: 10.1364/ao.43.000366.

Abstract

A system that performs three-dimensional (3D) tracking of multiple skin-colored regions (SCRs) in images acquired by a calibrated, possibly moving stereoscopic rig is described. The system consists of a collection of techniques that permit the modeling and detection of SCRs, the determination of their temporal association in monocular image sequences, the establishment of their correspondence between stereo images, and the extraction of their 3D positions in a world-centered coordinate system. The development of these techniques has been motivated by the need for robust, near-real-time tracking performance. SCRs are detected by use of a Bayesian classifier that is trained with the aid of a novel technique. More specifically, the classifier is bootstrapped with a small set of training data. Then, as new images are being processed, an iterative training procedure is employed to refine the classifier. Furthermore, a technique is proposed to enable the classifier to cope with changes in illumination. Tracking of SCRs in time as well as matching of SCRs in the images of the employed stereo rig is performed through computationally inexpensive and robust techniques. One of the main characteristics of the skin-colored region tracker (SCRT) instrument is its ability to report the 3D positions of SCRs in a world-centered coordinate system by employing a possibly moving stereo rig with independently verging CCD cameras. The system operates on images of dimensions 640 x 480 pixels at a rate of 13 Hz on a conventional Pentium 4 processor at 1.8 GHz. Representative experimental results from the application of the SCRT to image sequences are also provided.