The Effect of Single and Combined Use of Gamma Radiation and Ethylmethane Sulfonate on Early Growth Parameters in Sorghum

Plants (Basel). 2020 Jun 30;9(7):827. doi: 10.3390/plants9070827.

Abstract

Success in inducing genetic variation through mutagenic agents is dependent on the source and dose of application. The objective of this study was to determine the optimum doses of a single and combined use of gamma radiation and ethylmethane sulfonate (EMS) for effective mutation breeding in sorghum. The study involved two concurrent experiments as follows: in experiment I, the seeds of four sorghum genotypes ('Parbhani Moti', 'Parbhani Shakti', 'ICSV 15013', and 'Macia') were treated using gamma radiation (0, 300, 400, 500 and 600 Gy), EMS (0, 0.5 and 1.0%), and gamma radiation followed by EMS (0 and 300 Gy and 0.1% EMS; 400 Gy and 0.05% EMS). In experiment II, the seeds of two genotypes ('Macia' and 'Red sorghum') were treated with seven doses of gamma radiation only (0, 100, 200, 300, 400, 500 and 600 Gy). Overall, the combined applied doses of gamma radiation and EMS are not recommended due to poor seedling emergence and seedling survival rate below LD50. The best dosage of gamma radiation for genotypes Red sorghum, Parbhani Moti, Macia, ICSV 15013 and Parbhani Shakti ranged between 392 and 419 Gy, 311 and 354 Gy, 256 and 355 Gy, 273 and 304 Gy, and 266 and 297 Gy, respectively. The EMS optimum dosage ranges for genotypes Parbhani Shakti, ICSV 15013, Parbhani Moti and Macia were between 0.41% and 0.60%, 0.48% and 0.58%, 0.46% and 0.51%, and 0.36% and 0.45%, respectively. The above dose rates are useful to induce genetic variation in the tested sorghum genotypes for greater mutation events in sorghum breeding programs.

Keywords: ethylmethane sulfonate; gamma radiation; sorghum.