Feral Swine as Indirect Indicators of Environmental Anthrax Contamination and Potential Mechanical Vectors of Infectious Spores

Pathogens. 2023 Apr 20;12(4):622. doi: 10.3390/pathogens12040622.

Abstract

Anthrax is a disease that affects livestock, wildlife, and humans worldwide; however, its relative impacts on these populations remain underappreciated. Feral swine (Sus scrofa) are relatively resistant to developing anthrax, and past serosurveys have alluded to their utility as sentinels, yet empirical data to support this are lacking. Moreover, whether feral swine may assist in the dissemination of infectious spores is unknown. To address these knowledge gaps, we intranasally inoculated 15 feral swine with varying quantities of Bacillus anthracis Sterne 34F2 spores and measured the seroconversion and bacterial shedding over time. The animals also were inoculated either one or three times. The sera were evaluated by enzyme-linked immunosorbent assay (ELISA) for antibodies against B. anthracis, and nasal swabs were cultured to detect bacterial shedding from the nasal passages. We report that the feral swine developed antibody responses to B. anthracis and that the strength of the response correlated with the inoculum dose and the number of exposure events experienced. Isolation of viable bacteria from the nasal passages of the animals throughout the study period suggests that feral swine may assist in the spread of infectious spores on the landscape and have implications for the identification of environments contaminated with B. anthracis as well as the exposure risk to more susceptible hosts.

Keywords: Bacillus anthracis; ELISA; Sus scrofa; anthrax; experimental inoculation; feral swine; mechanical vectors; sentinel; spores; surveillance.