Introducing a semi-coated model to investigate antibacterial effects of biocompatible polymers on titanium surfaces

Int J Mol Sci. 2015 Feb 17;16(2):4327-42. doi: 10.3390/ijms16024327.

Abstract

Peri-implant infections from bacterial biofilms on artificial surfaces are a common threat to all medical implants. They are a handicap for the patient and can lead to implant failure or even life-threatening complications. New implant surfaces have to be developed to reduce biofilm formation and to improve the long-term prognosis of medical implants. The aim of this study was (1) to develop a new method to test the antibacterial efficacy of implant surfaces by direct surface contact and (2) to elucidate whether an innovative antimicrobial copolymer coating of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate (VP:DMMEP 30:70) on titanium is able to reduce the attachment of bacteria prevalent in peri-implant infections. With a new in vitro model with semi-coated titanium discs, we were able to show a dramatic reduction in the adhesion of various pathogenic bacteria (Streptococcus sanguinis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis), completely independently of effects caused by soluble materials. In contrast, soft tissue cells (human gingival or dermis fibroblasts) were less affected by the same coating, despite a moderate reduction in initial adhesion of gingival fibroblasts. These data confirm the hypothesis that VP:DMMEP 30:70 is a promising antibacterial copolymer that may be of use in several clinical applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / pharmacology
  • Bacterial Adhesion / drug effects
  • Cell Adhesion / drug effects
  • Cell Line
  • Cell Proliferation / drug effects
  • Coated Materials, Biocompatible / chemistry*
  • Gram-Negative Bacteria / drug effects
  • Gram-Positive Bacteria / drug effects
  • Humans
  • Materials Testing
  • Polymers / chemistry*
  • Surface Properties
  • Titanium / chemistry*

Substances

  • Anti-Bacterial Agents
  • Coated Materials, Biocompatible
  • Polymers
  • Titanium