Prediction of Strength Properties of Filling Packets in Selected Cooling Towers

Polymers (Basel). 2021 Nov 6;13(21):3840. doi: 10.3390/polym13213840.

Abstract

The operating conditions of thermoplastic polymer materials determine the changes in their functional properties. Accelerated aging tests do not give a full picture of the changes taking place in the polymer material, hence the conclusions drawn on the basis of exposure of these materials to damaging effects in real operating conditions are particularly important. The aim of the study was to determine the degree of degradation of polypropylene films used in the drainage blocks of cooling towers in a selected power plant in the Silesian voivodship, which allowed forecasting the operating time over a period of 10 years. A number of 600 mm high drip blocks were tested, on which 300 mm high blocks were mounted. The tests were carried out on films subjected to the aging process in the conditions of continuous operation of a cooling tower (almost 100% humidity). The water flow is accompanied by heat exchange, the side effect of which is deposits formation on the surface of the drip blocks, negatively affecting the operation of the cooling tower. The degree of degradation resulting from operational aging was assessed on the basis of the strength properties determined in the static tensile test, thermogravimetric analysis and FTIR spectra. Changes in properties during operation were determined on the basis of the obtained results of the strength tests, which were compared with the tensile strength and elongation at break of reference samples (not subjected to aging in the operating conditions of cooling tower drip blocks). The obtained results were related to the properties of the reference samples not subjected to the degradation process. Based on the collected data, the tensile strength and deformation at fracture after a 10-year service life were predicted.

Keywords: degradation of polymeric materials; infrared absorption spectrum; mechanical properties; polypropylene films; prediction of exploitation time; thermogravimetric curves.