Seismo-acoustic propagation near thin and low-shear speed ocean bottom sediments using a massive elastic interface

J Acoust Soc Am. 2014 Jan;135(1):115-23. doi: 10.1121/1.4829531.

Abstract

The seafloor is considered to be a thin surface layer overlying an elastic half space. In addition to layers of this type being thin, they may also have shear wave speeds that can be small (order 100 m/s). Both the thin and low-shear properties, viewed as small parameters, can cause mathematical and numerical singularities to arise. Following the derivation presented by Gilbert [Geophys. J. Int. 133, 230-232 (1998)], the surface layer is approximated as a thick, finite-thickness interface, and modified ocean bottom fluid-solid interface conditions are derived as jump conditions across the interface. The resultant interface conditions are incorporated into a seismo-acoustic parabolic equation solution, and this interface-based solution is benchmarked against existing solutions and previously derived modified fluid-solid interface jump conditions. Accuracy quantification is given via dimensionless interface thickness parameters.

Publication types

  • Research Support, Non-U.S. Gov't