In Situ Nano-SiO2 Electrospun Polyethylene-Oxide-Based Nano-Fiber Composite Solid Polymer Electrolyte for High-Performance Lithium-Ion Batteries

Nanomaterials (Basel). 2023 Apr 6;13(7):1294. doi: 10.3390/nano13071294.

Abstract

Polyethylene oxide (PEO)-based composite polymer electrolytes (CPEs) containing in situ SiO2 fillers are prepared using an electrostatic spinning method at room temperature. Through the in situ hydrolysis of tetraethyl silicate (TEOS), the generated SiO2 nanospheres are uniformly dispersed in the PEO matrix to form a 3D ceramic network, which enhances the mechanical properties of the electrolyte as a reinforcing phase. The interaction between SiO2 nanospheres and PEO chains results in chemical bonding with a decrease in the crystallinity of the PEO matrix, as well as the complexation strength of PEO chains with lithium ions during the hydrolysis process. Meanwhile, the addition of SiO2 nanospheres can disturb the orderliness of PEO chain segments and further suppress the crystallization of the PEO matrix. Therefore, improved mechanical/electrochemical properties can be obtained in the as-spun electrolyte with the unique one-dimensional high-speed ion channels. The electrospun CPE with in situ SiO2 (10 wt%, ca. 45 nm) has a higher ionic conductivity of 1.03 × 10-3 S cm-1 than that of the mechanical blending one. Meanwhile, the upper limit of the electrochemical stability window is up to 5.5 V versus Li+/Li, and a lithium-ion migration number can be of up to 0.282 at room temperature. In addition, in situ SiO2 electrospun CPE achieves a tensile strength of 1.12 MPa, elongation at the break of 488.1%, and it has an excellent plasticity. All in all, it is expected that the electrospun CPE prepared in this study is a promising one for application in an all-solid-state lithium-ion battery (LIB) with a high energy density, long life cycle, and high safety.

Keywords: all-solid-state lithium battery; electrochemical properties; electrostatic spinning; in situ SiO2 nanospheres; solid-state polymer electrolyte.