Retention of heavy metals from mine tailings using Technosols prepared with native soils and nanoparticles

Heliyon. 2021 Jul 22;7(7):e07631. doi: 10.1016/j.heliyon.2021.e07631. eCollection 2021 Jul.

Abstract

A large number of heavy metals are generated in tailings of precious metal extractive operations, which could cause high levels of water contamination. Because of the environmental and health concerns, many conventional technologies have been applied to capture heavy metals from mining-polluted streams with limited performance in terms of effectiveness and immobilization efficiency. In this context, this study evaluates the retention of mine-generated heavy metals using Technosols prepared with iron-rich soils and multicomponent nanoparticles of Fe/FeS (MCNPs). Firstly, nanoparticles were synthesized using orange-peel extract and sodium borohydride (NaBH4) as reductant agents and FeCl3.6H2O and Na2SO4 as metal precursors. The TEM and SEM images showed nanoparticles with roughly spherical morphology with a size in the range of 35.9 ± 11.7 nm arranged in a kind of filamentous structure. Secondly, Soils were dosed with 1% and 3% (w/w) of multicomponent nanoparticles and then used to capture heavy metals present in mine tailings using batch and fixed-bed column tests. The Technosol prepared with 97% soil, and 3% MCNPs reached on average 70% retention of heavy metals for fixed-bed setups. While, in batch experiments using the same Technosol, the capture of heavy metals was 80% after 6 min of treatment, and upon reaching 30 min, 90% removal was attained. This suggests that tailored Technosols might be part of a promising technology to treat contaminated mine tailings with reasonable spending.

Keywords: Fe/FeS nanoparticles; Orange peel; Tailings; Technosols.