Variation of the Molecular Conformation, Shape, and Cavity Size in Dinuclear Metalla-Macrocycles Containing Hetero-Ditopic Dithiocarbamate-Carboxylate Ligands from a Homologous Series of N-Substituted Amino Acids

Inorg Chem. 2016 Dec 5;55(23):12451-12469. doi: 10.1021/acs.inorgchem.6b02387. Epub 2016 Nov 22.

Abstract

A homologous series of dithiocarbamate ligands derived from N-substituted amino acids was reacted with different diorganotin dichlorides to give 18 diorganotin complexes. Spectroscopic and mass spectrometric analysis evidenced the formation of assemblies with six-coordinate tin atoms embedded in skewed-trapezoidal bipyramidal coordination environments of composition C2SnS2O2. Single-crystal X-ray diffraction analysis for three of the compounds revealed a one-dimensional polymeric structure for the complex with the ligand derived from 5-aminopentanoic acid, which through further intermolecular Sn···O interactions generated an overall two-dimensional coordination polymer containing 40-membered hexanuclear tin macrocycles. On the contrary, the ligands derived from 6-aminohexanoic and 8-aminooctanoic acid provided the expected 22- and 26-membered dinuclear macrocyclic structures. Density functional theory calculations for a representative series of macrocyclic complexes of composition [Me2SnLx]2 with Lx = ¯S2CN(Me)-(CH2)x-COO¯ (x = 3-12) enabled a detailed analysis of the variations in the molecular conformation, shape, and cavity size of the macrocycles in dependence of the aliphatic spacer. Because of odd-even effects, the difunctional ligands can adopt either a curved or a twisted-pincer shape, while the SnSxO4-x (x = 0-4) moieties can act either as linear or angular tectons with varying connectivity angles.