Is maximal lactate steady state during intermittent cycling different for active compared with passive recovery?

Appl Physiol Nutr Metab. 2012 Dec;37(6):1147-52. doi: 10.1139/h2012-105. Epub 2012 Oct 2.

Abstract

The purpose of this study was to analyze the effect of recovery type (passive vs. active) during prolonged intermittent exercises on the blood lactate concentration (MLSS) and work rate (MLSS(wint)) at maximal lactate steady state. Nineteen male trained cyclists were divided into 2 groups for the determination of MLSS(wint) using passive (maximal oxygen uptake = 58.1 ± 3.5 mL·kg(-1)·min(-1); N = 9) or active recovery (maximal oxygen uptake = 60.3 ± 9.0 mL·kg(-1)·min(-1); N = 10). They performed the following tests, on different days, on a cycle ergometer: (i) incremental test until exhaustion to determine maximal oxygen uptake; (ii) 2 to 3 continuous submaximal constant work rate tests (CWRT) for the determination of the work rate at continuous maximal lactate steady state (MLSS(wcont)); and (iii) 2 to 3 intermittent submaximal CWRT (7 × 4 min and 1 × 2 min, with 2-min recovery) with either passive or active recovery for the determination of MLSS(wint). MLSS(wint) was significantly higher when compared with MLSS(wcont) for both passive recovery (294.7 ± 32.2 vs. 258.7 ± 24.5 W, respectively) and active recovery groups (300.5 ± 23.9 vs. 273.2 ± 21.5 W, respectively). The percentage increments in MLSS(wint) were similar between conditions (passive = 13% vs. active = 10%). MLSS (mmol·L(-1)) was not significantly different between MLSS(wcont) and MLSS(wint) for either passive recovery (4.50 ± 2.10 vs. 5.61 ± 1.78, respectively) and active recovery (4.06 ± 1.49 vs. 4.91 ± 1.91, respectively) conditions. We can conclude that using a work/rest ratio of 2:1, MLSS(wint) was ∼10%-13% higher than MLSS(wcont), irrespective of the recovery type performed during prolonged intermittent exercises.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Bicycling / physiology*
  • Exercise / physiology*
  • Exercise Test
  • Heart Rate
  • Humans
  • Lactic Acid / blood*
  • Male
  • Oxygen Consumption
  • Physical Endurance / physiology
  • Physical Exertion / physiology

Substances

  • Lactic Acid